

Return on Investment The Value Drivers for Zero Trust Application and Workload Protection

Stop Zero-day Malware, Ransomware and Data Breaches
Mitigate Vulnerabilities in Production Environments - Unpatched, Legacy, & Cloud
Automate Application Workload Security Controls

Executive Summary

The Virsec Security Platform (VSP) adds a layer to your defense in depth strategy that segments and proactively protects applications and virtualized compute infrastructure with automated security controls.

Three use cases are modeled to address:

- 1. Ransomware protection
- 2. Legacy Microsoft Windows and Linux applications and host runtime environments
- 3. Unpatched vulnerabilities

Top 3 Take-aways

- 1. Save \$9.4 million over 3 years from operational efficiencies, cost avoidance, and fees for legacy systems.
- 2. Reduce human capital by 90% assigned to analyzing scans, false positives, and incident tasks.
 - » Avoid staff burnout
 - » Free up resources
- 3. Reduce risk from zero-day threats including: malware, ransomware, and data breaches exploiting vulnerabilities.

Table of Contents

Page **Contents** 3 _____ Zero Trust Application and Workload Protection 4 _____ Calculating Risk 5 Likelihood of a Breach 6 _____ Impact of a Breach by Routinely Exploited Vulnerabilities 7 Mitigating Risk - MITRE Top 25 8 Investing in Application and Workload Security 9 Enhancing Your Security Posture **10** _ Value Drivers 11 NIST Based Security Controls 12 _____ Summary Customer Value **13** Protect Web Applications and Workloads **14** _____ Protect Legacy Applications and Host Workloads 16 _____ Automate Continuous Security Monitoring **18** _____ Strengthen Your Security Posture with Virsec

Zero Trust Application & Workload Protection

The Virsec Security Platform (VSP) integrates with the DoD and CISA Zero Trust pillars to deliver Zero Trust protection to:

- **Application & Workloads**
- Automation & Orchestration
- **Visibility & Analytics**

Security Controls

Instrumentation

Source: DOD

3

Calculating Risk 5 Key Factors...

3 Factors

2 Factors

Likelihood of a Breach

- the real-time threat of the vulnerability being exploited
- 2. the exposure of the asset to the threat
- whether mitigating security controls are in place to protect the asset

Impact of a Breach

- 4. the severity of the vulnerability
- 5. the business criticality of the underlying asset

Risk = likelihood (%) x impact (\$)

Likelihood of a Breach

Highest Value Target: Servers

(~)

Top attack patterns are system intrusions with basic web application attacks

source: Verizon Data Breach Investigation Report, 2023

Impact of a Breach - System Intrusions

Top Routinely Exploited Vulnerabilities - CISA

	Vendor	CVE	Туре		
1	Citrix	CVE-2019-19781	arbitrary code execution		
2	Pulse	CVE 2019-11510	arbitrary file reading		
3	Fortinet	CVE 2018-13379	path traversal		
4	F5- Big IP	CVE 2020-5902	Remote Code Execution (RCE)		
5	MobileIron	CVE 2020-15505	RCE		
6	Microsoft	CVE-2017-11882	RCE		
7	Atlassian	CVE-2019-11580	RCE		
8	Drupal	CVE-2018-7600	RCE		
9	Telerik	CVE 2019-18935	RCE		
10	Microsoft	CVE-2019-0604	RCE		

source: https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-209a

70% of the top ten routinely exploited vulnerabilities are Remote Code Executions (RCE)

Mitigating Risk - 2022 MITRE Top 25

CWE-787	Out-of-bounds Write	
CWE-79	Cross-site Scripting	
CWE-89	SQL Injection	
CWE-20	Improper Input Validation	
CWE-125	Out-of-bounds Read	
CWE-78	OS Command Injection	Virsec Security Platform Security Lavers
CWE-416	Use After Free	
CWE-22	Path Traversal	Vulnerability Protection
CWE-352	Cross-Site Request Forgery (CSRF)	(pre infiltration)
CWE-434	Unrestricted Upload of Dangerous File Type	
CWE-476	NULL Pointer Dereference	Exploit Protection
CWE-502	Deserialization of Untrusted Data	(post infiltration)
CWE-190	Integer Overflow or Wraparound	
CWE-287	Improper Authentication	
CWE-798	Use of Hard-coded Credentials	
CWE-862	Missing Authorization	
CWE-77	Command Injection	
CWE-306	Missing Authentication for Critical Function	
CWE-119	Memory Buffer	97.5% of CWEs covered by
CWE-276	Incorrect Default Permissions	
CWE-918	Server-Side Request Forgery (SSRF)	Virsec Security Platform (VSP)
CWE-362	Race Condition	
CWE-400	Uncontrolled Resource Consumption	
CWE-611	XML External Entity Reference	
CWE-94	Code Injection	Likelihood of a Breach Occurring
	NVD vulnerability entries per CWE:	500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Why Invest in Application and Workload Protection

- 1. Prevent interruptions to customer services and business processes.
- 2. Save up to \$9.4 million within three years.
- 3. Reduce risk and comply with NIST, CISA, PCI, CIS compensating controls.
- 4. Reduce alert fatigue to the Ops, SOC and App teams.
- 5. Extend Zero Trust with enforcement of authorized application dependencies and their host environments at runtime.

Add Protection to Detect and Respond

Enhancing Your Security Posture

Positive security posture to protect application workloads
– no implicit trust.

Prevent sophisticated malware, ransomware and data breach zero-day exploits of known, unknown, unpatched, and legacy vulnerabilities.

Increase operational efficiencies by 90% with less false positives hitting the SIEM and SOC teams.

Prevent data loss to cyber criminals and other bad actors.

 Extend defense in depth with an added security layer that is independent of identity or perimeter security

Value Drivers – Protecting Open Attack Surfaces

Virsec leverages security controls that embrace a modern automated "allowlisting" approach — permitting only known good code (executables, libraries, and scripts) to run. All other code is explicitly denied execution — eliminating dwell time and stopping zero-day attacks before exploitation can occur.

Protect Mission-Critical Workloads

Backstop protection against zeroday, RCE, ransomware and software supply chain vulnerability exploits to ensure business continuity and avoid the cost of a breach.

Legacy System and Workload Protection

Protect vulnerable **out-of-support** applications and host OS workloads **open attack surfaces** against modern cyber attacks. Virsec's platform protects legacy systems like RHEL 6, Microsoft 2003, 2008, or 2012. Reduce the need for "best effort" patching and maintenance contracts.

Continuous Shielding for Unpatched Vulnerabilities

Take proactive steps to thwart cyber criminals from **exploiting unpatched vulnerabilities**. Prevent Remote Code Execution (RCE), Living-off-the-Land and Cross-Site Scripting threats.

NIST Based Security Controls Zero Trust Application & Workload Protection

Security and Privacy Controls for Information Systems and Organizations (NIST SP 800-53r5)

11

Summary Customer Value

Protect Mission-Critical Workloads

Legacy System and Workload Protection

Continuous Shielding for Unpatched Vulnerabilities

3-Year Impact \$3.5 M

3-Year Impact \$3.2 M 3-Year Impact \$2.7 M

\$9.4 M Saved within 3 Years

Keep reading to explore how the savings are realized...

Protect Mission-Critical Workloads Saved \$3.58 million through cost avoidance

Metric	Cost Element	Source	Year 1	Year 2	Year 3	Total
D1	Average global cost of a data breach	Ponemon, IBM	\$4.4M	\$4.4M	\$4.4M	
D2	Probability of a large data breach	Ponemon, IBM	27%	27%	27%	
D3	Savings from preventing data breaches		\$1.188M	\$1.188M	\$1.188M	\$3.56M

Take the average \$4.4 million-dollar cost of a global breach and 27% as the probability that it will occur.

- Treat malware, ransomware and data breaches as being equal exploits with similar potential impacts.
- Additional impact avoided: paying the ransom, compliance penalties, lost customer business, lost employee productivity.

Legacy System & Workload Protection Microsoft Windows 2003, 2008, 2012

- Legacy applications and host operating system (OS) workloads present a sizable attack surface for cyber criminals and nationstate organizations to find and exploit known vulnerabilities.
 - » 75% of attacks in 2020 used vulnerabilities that were at least two years old.*

The alternatives to organizations are limited :

- **1.** Do nothing, play the odds that you're lucky.
- 2. Pay significant amounts of money for Extended Security Updates (ESUs) and out-of-support patches.
- **3.** Partner with Virsec for vulnerability shielding and hardening techniques.

Protect Legacy Applications and Host Workloads

Save \$3.2 Million and Reduce Risk

Metric	Cost Element	Source	Year 1	Year 2	Year 3	Total
A1	Microsoft fees for a special release	Customer	\$246,749	\$370,124	\$431,811	
A2	Number of out-of- support servers	Customer	100	150	175	
A3	Average global cost of a data breach	Ponemon, IBM	\$4.4M	\$4.4M	\$4.4M	
A4	Probability of a large data breach	Ponemon, IBM	27%	27%	27%	
A5	Savings from preventing data breaches		\$1.069M	\$1.069M	\$1.069M	\$3.207M

* Server pricing model - \$3,289

Continuous Shielding for Unpatched Vulnerabilities

- Virsec Security Platform (VSP) proactively monitors applications and host OS workloads allowing human capital to be allocated to high potential incidents.
 Reduction in false positives generated – estimate 90%.
 - » The positive security model (deny all) allows authorized application dependencies to execute at runtime without generating significant false positives.
 - The negative security model (allow all) generates large volumes of false positives as it attempts to match known behavior patterns.
 Reduction analysis of vulnerability scans – estimate 90%.
 - » VSP incidents are precise and accurate, eliminating the need for deep analysis of low probability incidents.

Continuous Shielding for Unpatched Vulnerabilities

Save \$2.7 Million and Reduce Alert Fatigue

Metric	Cost Element	Source	Year 1	Year 2	Year 3	Total
B1	Number of Security Incidents – false positives	Customer	20,000/mth	35,000/mth	50,000/mth	
B2	% Reduction after Virsec Security Platform	Observed	90%	90%	90%	
D1	Average hours to analyze – false positives	Customer	0.32	0.32	0.32	
D2	Number of hours saved per year	Observed	5,760	10,080	14,400	
D3	Productivity gains	\$85 / Hour	\$525,600	\$919,800	\$1.314M	\$3.207M

How Virsec Strengthens Defense in Depth for Applications and Workloads

VIrsec

To learn more about the Virsec Security Platform and to find out how to start protecting your mission-critical server workloads, visit us at <u>www.virsec.com</u>

¹Gartner, Market Guide for Cloud Workload Protection Platforms, 12 July 2021, Neil MacDonald, Tom Croll.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner's research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

At Virsec we know a protection-first cybersecurity model is possible. By making server workloads self-protecting, we offer continuous protection, stopping known and unknown attacks—including zero days. With our revolutionary, patented technology, we secure software from the inside at runtime, precisely mapping what the app can do and stopping malicious code before it can run. Battle-tested against 200+ of the top government red-teamers and trusted by several Fortune100 companies, Virsec has repeatedly proven a protection-first model works. Virsec is headquartered in San Jose, California, with offices worldwide. For more information, please visit virsec.com.